Chern-Osserman inequality for minimal surfaces in $\mathbf {H}^n$
نویسندگان
چکیده
منابع مشابه
Minimal Surfaces That Attain Equality in the Chern-osserman Inequality
In the previous paper, Takahasi and the authors generalized the theory of minimal surfaces in Euclidean n-space to that of surfaces with holomorphic Gauss map in certain class of non-compact symmetric spaces. It also includes the theory of constant mean curvature one surfaces in hyperbolic 3-space. Moreover, a Chern-Osserman type inequality for such surfaces was shown. Though its equality condi...
متن کاملDigital cohomology groups of certain minimal surfaces
In this study, we compute simplicial cohomology groups with different coefficients of a connected sum of certain minimal simple surfaces by using the universal coefficient theorem for cohomology groups. The method used in this paper is a different way to compute digital cohomology groups of minimal simple surfaces. We also prove some theorems related to degree properties of a map on digital sph...
متن کاملMean curvature and compactification of surfaces in a negatively curved Cartan–Hadamard manifold
where χ(S) is the Euler characteristic of the surface, B r denotes the geodesic r-ball in Hn(b) and Vol(S 2∩Bb,n r ) Vol(B r ) is the volume growth of the domains S2 ∩B r . A natural question arises in this context: can we prove the finiteness of the topology of a not necessarily minimal surface in a Cartan–Hadamard manifold and, moreover, establish a Chern–Osserman-type inequality for its Eule...
متن کاملMinimal Surfaces for Stereo
Determining shape from stereo has often been posed as a global minimization problem. Once formulated, the minimization problems are then solved with a variety of algorithmic approaches. These approaches include techniques such as dynamic programming min-cut and alpha-expansion. In this paper we show how an algorithmic technique that constructs a discrete spatial minimal cost surface can be brou...
متن کاملMinimal Surfaces
This summer, I worked with Professor Ailana Fraser and studied free boundary minimal surfaces immersed in the unit ball. These surfaces have zero mean curvature everywhere and meet the ball orthogonally. Let such a surface be denoted Σ. Consider the set of conformal transformations of the unit ball, and let any surface obtained by these transformations be denoted γ(Σ). The questions that we con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1999
ISSN: 0002-9939,1088-6826
DOI: 10.1090/s0002-9939-99-05334-4